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Abstract. This study focuses on the modelling of steel reinforcing bars subjected to a gener-
alized loading history. The model of Monti and Nuti which is based on a set of experimental 
observations in order to account for buckling of the steel bars is examined. It has been no-
ticed that in the case of partial unloading and then reloading, a common situation when a 
structure is subjected to seismic actions, the model might greatly overestimate the corre-
sponding stress. An additional memory rule is thus proposed to eliminate this observed short-
coming. With the aid of the proposed modification, the Monti-Nuti model proved to be 
capable of simulating accurately the capacity of reinforced concrete members. The rules pre-
sented are easy to implement and applicable to any model in the literature where a similar 
situation is identified. Two case studies are examined where the enhanced model was proven 
capable to produce realistic numerical results. 
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1 INTRODUCTION 
Past earthquakes have shown that a common failure mode of reinforced concrete (RC) 

members is buckling of the longitudinal reinforcement. In order to obtain an accurate predic-
tion of strength and ductility, this effect should thus be taken into account during analysis. 
Buckling of the reinforcement is in essence a stability problem and therefore depends both on 
the geometry of the bar and on the material properties. However, treating the problem as a 
second-order problem would require a detailed FE modelling approach. In practice, in order to 
allow for an easier modelling of RC structures, phenomenological constitutive laws where 
buckling is taken into consideration through the material properties are commonly adopted. 

The interest of this study is on uniaxial stress-strain relationships, which can be used in the 
framework of a fiber beam-column element and also can capture accurately the response of a 
linear element with minor bending stiffness such as a reinforcing bar. In particular, special 
attention is paid on the model proposed by Monti and Nuti [1]. This model incorporates a set 
of experimental observations regarding the response of steel reinforcement into the widely-
used stress-strain relationship of Menegotto and Pinto [2]. 

Experience has shown that a stress-strain relationship may fail to predict correctly the re-
sponse when small reversals in the strain history occur; this is the case when the structural 
model is subjected to a ground motion record. Initially this problem was identified in the 
model of Menegotto and Pinto [2] by Filippou et al. [3], who pointed out that, in order to 
avoid such an undesirable behaviour, the memory of the analytical model should extent over 
all previous branches of the stress-strain history. In terms of implementation this would be 
impractical and thus Filippou et al. [3] proposed to limit the memory of the model to four 
controlling curves, which warrant that, at least at the structural level, this numerical problem 
is almost fully eliminated. 

The aforementioned numerical difficulty strongly manifests itself when the Monti-Nuti 
buckling rules [1] are implemented on the model of Menegotto and Pinto [2], even if the 
Filippou et al. [3] modifications are adopted; the response may be heavily distorted, thus lim-
iting the applicability of the model to non-earthquake engineering applications. In this work, 
an additional memory rule that enables more accurate handling of a generalized load history is 
proposed. The methodology proposed is general in scope since it can be applied almost to any 
constitutive law of a ( )σ f ε=  type, including the Menegotto-Pinto and the Monti-Nuti mod-
els. Emphasis is placed on the Monti-Nuti relationship, where the problem is more critical and 
also because the Menegoto-Pinto model does not feature modelling of re-bar buckling. 

2 GENERAL SPECIFICATIONS 

2.1 Description of the physical problem 

During load reversals, concrete in compression zone prevents the development of high 
compressive strain in the compressive steel. Only when concrete loses its resistance, as in the 
case of concrete spalling, the development of high compressive strain in reinforcing steel is 
likely. After spalling of the concrete cover the longitudinal bars are exposed and if the ampli-
tude of the cyclic loading is significant the bars will buckle outwards. The only factor con-
tributing against buckling is the existence of stirrups, that should be sufficiently spaced and 
detailed, particularly in those parts of the member where heavy inelasticity excursion is likely 
to take place. 

Several parameters are involved in the phenomenon of buckling such as the slenderness of 
the rebar, the stiffness and the rigidity of the hoops and the strain hardening of steel. The most 
important is probably the slenderness of the rebars. A measure of slenderness is given by the 
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ratio between the length of the stirrups over the diameter of the bar, L D . The failure modes 
usually observed are, primarily, buckling between two consecutive stirrups and, less com-
monly, along a larger length when fracture of more than one stirrup occurs. 

Only the monotonic behaviour has been thoroughly investigated when it comes to buckling, 
while the cyclic behaviour is still under investigation. According to Mander et al. [4] buckling 
takes place at or near the yielding load, which is also verified by the recent study of Bae et al. 
[5]. The monotonic post-buckling path varies for different slenderness ratios of the bar. Mau 
and El-Mabsout [6] presented monotonic curves for different, L D  ratios, where it is con-
cluded that the higher the values of the ratio L D , the lower the post-buckling peak stress. 
They have also verified numerically that the transition point between elements that are sub-
jected to buckling phenomena and those that are not, is for L D  values close to five. For ratio 
values smaller than this threshold, the stress-strain relationship remains similar to that in ten-
sion. Monti and Nuti [1] and Cosenza and Prota [7] both presented results where the above 
threshold was justified experimentally, while Bae et al. [5] concluded, on the basis of ex-
tended experiments, that this threshold value may vary also according to the yield strength of 
the bar. Moreover, Cosenza and Prota [7] showed that for L D  ratio values greater than 20, 
elastic buckling is more likely to occur. 

2.2 State-of-the-art in modelling of the bars of steel bars 
Few attempts to capture buckling of the longitudinal bars can be found in the literature. 

Among them, the proposals of Gomes and Appleton [8] and Monti and Nuti [1] are based on 
modifications of the Menegotto-Pinto model [2]. Monti and Nuti [1] proposed a set of rules 
based on experimental observations of buckling of reinforcement bars. The stress-strain rela-
tionship adopted was that of Menegotto-Pinto, though any given constitutive law may be used, 
if expressed accordingly. The parameters of the Monti-Nuti model are updated after each load 
reversal, with such updating being performed by means of the two classical (i) isotropic and 
(ii) kinematic hardening rules, (iii) a memory rule to account for the material’s memory of the 
plastic path followed and (iv) a saturation rule to account for the asymptotic character of the 
hardening phenomena. These four rules are defined both in the absence and in the presence of 
buckling. A detailed description of the model is provided by Monti and Nuti [1], where ex-
periment-based values are used in order to calibrate the model; different values can be easily 
adopted on the basis of alternative experiments (e.g. [5,7]). A brief description of the Monti-
Nuti is given in the following paragraphs. 

The backbone of the Monti-Nuti model is that of the Menegotto-Pinto relationship: 
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Eq. (1) represents a curved transition from a straight-line asymptote with slope E0 to another 
asymptote with slope 0bE  (Fig. 1 lines (α) and (β) respectively). 0σ  and 0ε  are the stress and 
the strain at the point where two asymptotes of the branch under consideration meet (Fig. 1, 
point A), while rσ  and rε  denote the stress and strain at the point where the last strain rever-
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sal with stress of equal sign took place (Fig. 1, point B). The shape of the transition curve al-
lows a good representation of the Baushinger effect. This is a function of the curvature pa-
rameter R and depends on the strain difference between the current asymptote intersection 
point and the previous load reversal point with maximum or minimum strain depending on the 
corresponding steel stress [3]. 

 
Fig. 1. Stress-strain relationship of the Menegotto-Pinto model 

The expression for R takes the form: ( )( )0 1 2
n n n

p pR R a ξ a ξ= − + , where n
pξ  is the plastic 

excursion at the current semicycle, defined as: n n n
p r yξ ε ε= − . Also, R0 is the value of the pa-

rameter R during the first loading and a1, a2 are experimentally determined parameters to be 
defined together with R0. The hardening rules are functions of four independent parameters: 
yield stress yσ , elastic modulus E0, hardening ratio 0 pb  and a weighting coefficient P. In ab-
sence of buckling, experimental tests have shown that no isotropic hardening is developed in 
half-cycles with plastic excursion equal to or lower than the maximum previous one. In the 
presence of buckling a complementary phenomenon occurs, in this case no kinematic harden-
ing is developed in half-cycles with plastic excursion equal to or lower than the maximum 
previous one. These phenomena are modelled through a memory rule based on the additional 
plastic excursion n

pγ : 

 { }max signn n n
p p p pγ ξ ξ ξ= − ⋅  (3) 

where a a=  if a > 0  and 0a =  if  and ( )max n
p pξ max ξ=  is the maximum plastic excursion. 

The half-cycle plastic work is defined as: 

 ( )1
2

n n n n
p r y pΦ σ σ ξ= −  (4) 

n
pΦ  in absence of buckling is positive both in tension and in compression, while in the pres-

ence of buckling it is positive in tension and negative in compression. The hardening ratio 0 pb  
for post-yield hardening branches in tension is defined as the ratio between the post-yield 
modulus in tension and the initial elastic modulus. The curvature of the branch is defined as in 
the Menegotto-Pinto model. Some additional parameters are determined in order to account 
for buckling. The hardening ratio for post-yield softening branches in compression is defined 
as: 
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 ( )( )*
0 0.003nb L D L D= −  (5) 

which decreases with increasing L D  and is not related to the positive hardening ratio 0 pb . In  
Eq. (5), ( )*L D  denotes the threshold ratio beyond which inelastic buckling is expected to 
occur, usually taken equal to five. The curvature of the post-yield loading branches in com-
pression follows the rule: 

 
max

1
0 1max

2

b p
b b b

b p

a
R R R

a
⋅

= + <
+
ξ
ξ

 (6) 

where ( )( )0 0 2 *
bR . L D L D= − , 1 1 1ba a= + , 2 21000ba a= ,and ( )( )1 0 2 *

bR R L D L D= − − .  

The elastic modulus after reversal from compression varies according to: 

 ( ) ( )( )2
0 5 5 61 exp pE E a a a ξ= + − ⋅ −  (7) 

where ( )( )5 1 7 5*a L D L D .= + − , and 6 1000a = . The modulus decreases with increasing 
cycle amplitude, due to the bar axial stiffness degradation that takes place after buckling. 

The total hardening is obtained by means of a mixed rule consisting of both a kinematic 
and an isotropic component. A linear combination of two of the hardening types is assumed 
using a weighing coefficient P, which is calibrated experimentally: 

 ( ) ( )∆ ∆ 1 ∆ signn n n n
KI K I pσ P σ P σ ξ= ⋅ + − ⋅ ⋅ −  (8) 

A value of P=0.9 is suggested for common mild steel. The two hardening components are 
developed based on a memory rule. In the absence of buckling this rule is applied to the iso-
tropic hardening, while in the presence of buckling it is applied to the kinematic hardening 
instead. In the absence of buckling the stress variation is due to the plastic excursion and the 
additional plastic excursion is given as follows: 

Kinematic hardening: 0 0
1

n
n n
K n p

i
b E

=

∆ = ⋅ ⋅∑σ ξ  (9) 

Isotropic hardening: ( )0 0
1

sign
n

n n n
I n p p

i
b E

=
∆ = ⋅ ⋅ ⋅ Φ∑σ γ  (10) 

On the contrary, in the presence of buckling the stress variation is due to the additional plastic 
excursion which is defined as: 

Kinematic hardening: 0 0
1

n
n n
K n p

i
σ b E γ

=

∆ = ⋅ ⋅∑  (11) 

Isotropic hardening: ( )0 0
1

sign
n

n n n
I n p p

i
σ b E ξ

=

∆ = ⋅ ⋅ ⋅ Φ∑  (12) 

The updated stress 0
nσ  (or 1n

yσ
+ ) of Εq. (1) becomes: 

 ( )1 0 signn n n
y y p KIσ σ ξ σ+ = ⋅ − + ∆  (13) 
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3 RESPONSE UNDER A GENERALIZED LOAD HISTORY 

When a ground motion is used to perform timehistory analysis, relatively small loading-
unloading excursions of the material strains are frequent. Reinforcing bar numerical models, 
however, tend to be verified only under loading conditions such as that of Figure 2(a) where 
the loading scheme consists of large stable symmetric cycles. As a result, spurious numerical 
behaviour such as that illustrated in Fig. 2(b), that arise from random unsymmetrical loading 
cycles, might be overlooked. 
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(a) (b) 

Figure 2. (a) Response under stable cyclic strain history; (b) Spurious branches on the σ-ε level produced by the 
M-N model when the member is subjected to earthquake loading 

The severity of the problem depends on the formulation of the material model used. In par-
ticular, the Monti-Nuti model was found to be very sensitive to this situation, since a tiny 
notch in the stress-strain path may lead to a very large overestimation of the corresponding 
stress (Fig. 2(b)). This is due to the fact that the bilinear envelope, defined by the Menegotto-
Pinto model adopted by Monti and Nuti, becomes too narrow and the curves are not capable 
of “fitting” within it. Therefore, this spurious behaviour is generated because the same alge-
braic expression used for the skeleton curve is also used when a small unloading and loading 
back takes place. Consequently, the spurious branches of Fig. 2(b) are developed, with a 
shape that depends on the ratio between tie spacing and bar diameter L D . As shown in sec-
tions to follow, such overestimations may affect the accuracy of the overall analysis, for 
which reason it was deemed necessary to address them accordingly, as discussed subsequently. 

4 PROPOSED MODIFICATIONS 
In order to tackle difficulties such as those discussed in the previous section, Dodd and Re-

strepo-Posada [9] introduced the idea of major, minor and simple reversals, whilst Balan and 
Filippou [10] distinguished reversals into complete and incomplete, with a value of 2fy being 
adopted as a threshold parameter. For the Monti-Nuti model, Attolico et al.[11] proposed that 
whenever small strain variations take place, the model should follow the backbone curve be-
fore the last strain reversal. 

In the current work, an alternative corrective measure is proposed for the Monti-Nuti 
model, where the stress-strain curve is forced to join tangentially the branch defined during 
the previous strain reversal. In order to determine whether an unloading branch is small or not, 
a strain interval denoted as ε̂  is introduced. The latter is defined as a proportion of the strain 
value of the point of the last strain reversal rε . Typical efficient values vary between 2.5 or 5 
percent of rε , though larger values may be used if higher “filtering” is deemed necessary [12]. 
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(a) (b) 

Figure 3. Reversal modelling in the ε̂  interval 

  
(a) (b) 

Figure 4. Reversal modelling in the ε̂ interval, when reloading points obtained elastically. 

All loading and reloading that takes place inside the interval ε̂  are assumed to be linear 
elastic. Fig. 3(a) shows that when reloading beyond this interval (from point 4 to 5), the skele-
ton curve of the last loading branch is followed instead of updating the model parameters that 
would define a new loading branch. Otherwise, if unloading does not go beyond ε̂ , point 5 is 
obtained elastically  (Fig. 3(b)). Loading in the opposite direction, beyond point 4, will follow 
the previously defined branch 3-4 (Fig. 3(b)). Fig. 4 shows two cases where reloading starts 
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(a) (b) 

Figure 5. Corrected and uncorrected stress-strain paths; (a) L/D = 12, (b) L/D = 6. 

from points that have been previously obtained elastically. A strain step that results in a strain 
value outside the ε̂  interval will follow the previously defined skeleton branch curve (Fig. 
4(a)). Fig. 4(b) shows that all load reversals inside ε̂  are considered linear elastic. In Fig. 5, 
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the uncorrected and the corrected stress-strain histories for different L D  ratios are shown. 
Fig. 6 and Fig. 7, on the other hand, demonstrate the effectiveness of the algorithm at the 
stress-strain and the structural levels, respectively, when the structure is subjected to a ground 
motion record. 
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Figure 6. Comparison at the stress-strain level under seismic excitation; 
(a) without the proposed modifications, (b) with the proposed modifications. 

-40

-20

0

20

40

-10 -5 0 5 10

displacement (mm)

Fo
rc

e 
(k

N
)

 

-40

-20

0

20

40

-10 -5 0 5 10

displacement (mm)

Fo
rc

e 
(k

N
)

 

(a) (b) 
Figure 7. Comparison at the structural level under seismic excitation; 

(a) without the proposed modifications (b) with the proposed modifications. 

 

5 CALIBRATION OF THE MODEL 
The applicability of a material model depends largely on the values that the user/engineer 

will choose for the parameters of the model. In most cases in order to select appropriate val-
ues, calibration of the model and hence experimental results are required. Usually this sort of 
information is not available and therefore default values have to be used. When the law em-
ployed is sensitive to its parameters, lack of experimental results may narrow considerably its 
applicability. For both the Monti-Nuti and the Menegotto-Pinto models, suggested values can 
be obtained from various publications. A typical range for the model parameters are listed in  
 

 
Table 1. Bold letters denote the values that have been found appropriate for a wide range 

of applications by the authors. 
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Table 1 Material model parameters – Range of values 

 R0 a1 a2 a3 a4 P 
Men.- Pinto 20 18.5 0.05- 0.15 0.01 – 0.025 2 – 7 - 
Monti - Nuti 20 18.5 0.05- 0.15 - - 0.50 - 0.90 
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(a) (b) (c) 
Figure 8. Effect of the weight parameter P on the performance  

of the Monti-Nuti model; (a) P=50%, (b) P=75% and (c) P=90%. 

All the parameters of  
 

 
Table 1 have a clear physical meaning as described in the original publications. The curva-

ture parameters R0, a1 and a2 affect the shape of the hysteretic curve and hence the representa-
tion of the Bauschinger effect and the pinching of the hysteretic loops. Parameters a3 and a4 
quantify isotropic hardening. Usually the contribution of isotropic hardening is significantly 
smaller than that of kinematic and hence the set of values adopted would not affect considera-
bly the response. In Fig. (8) the parameter P is varied thus demonstrating the influence of iso-
tropic over kinematic hardening. A simple calibration procedure for this parameter that 
consists of single cycle tests is suggested in the original paper of Monti and Nuti. 

 

6 NUMERICAL STUDIES 

6.1 Column under Cyclic Loading Conditions 
The first case study consists of a cantilever column subjected to a displacement of con-

stantly increasing amplitude on its top. The loading program for the specimen consisted of a 
displacement-controlled cyclic loading scheme, where two cycles of displacement are applied 
at each deformation level with 2 mm/step increments. The displacement of the tip of the col-
umn, the FE model and the properties of the column are shown in Figure 9. 

The response obtained using three different reinforcing steel models is shown in Figure 10. 
The widely used bilinear model with kinematic hardening and the model of Menegotto and 
Pinto do not show degradation in the capacity of the column as opposed to the Monti-Nuti 
model where the envelope of the hysteretic loops shows clearly the reduction in the capacity 
of the column. It is also observed that, dissipation of energy and pinching of the hysteretic 
loops is not fully captured by the first two models. 
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Figure 9. Geometry, FE model, loading scheme and properties of the column. 
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Figure 10. Response of a cantilever beam; (a) bilinear kinematic hardening (b) M-P and (c) M-N. 

6.2 Wall under Dynamic Loading Conditions 

This case study is part of a series of shaking table tests carried out at the Centre for Earth-
quake Studies and Equipment at LNEC (Lisbon, Portugal).  Details concerning the project 
and the actual test set up are reported by Pinho et al. [13]. 

Ductility class ‘L’ was adopted to determine section size and longitudinal reinforcement 
requirements. The wall element with thickness of 200mm and its height and width are indi-
cated in Fig. 11. Both longitudinal and shear reinforcement are also shown in Figure 11. A 
combination of two artificial (AR) and two natural records (NR) was applied to generate the 
input ground motion shown Fig. 12 [13]. The resulting ground motion guarantees that the wall 
will be damaged progressively. The record was split into four stages, using scaled up and 
scaled down accelerograms in succession, without pause, mixing both natural and artificial 
records. The records, in order applied, were AR(0.14), NR(0.25), NR(0.33) and AR(0.18). 
The second portion of the nomenclature indicates the peak ground acceleration of each record. 

The transverse reinforcement used consists of ∅6/60 for the lower half and 
∅6/120 for the upper half, while ∅8 bars were used for the longitudinal reinforcement. 
Therefore, the L/D ratios of the wall are 7.5 and 15, respectively. Thus, buckling of the longi-
tudinal reinforcement is expected to take place and therefore considerable improvement of the 
results is expected when the Monti and Nuti rules are taken into consideration during analysis. 
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The default model parameters are used (see Table 1), while the corrective algorithm was 
adopted with 2.5% filtering of rε . 

                 

Figure 11. Dimensions and detailing of the test specimen 
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Figure 12. Acceleration ground motion record 

The data acquired during the test had to be filtered so that high-frequency content, associ-
ated to parasitic vibrations in the table and electromagnetic interference, could be removed. 
The smooth shape of the experimental curve is therefore associated to the filtering of the re-
cords. For succinctness, stage one (time=0÷10) and three (time=20÷30) of the loading phase 
are presented below (Fig. 13). 

Three models, the bilinear kinematic hardening, the Menegotto-Pinto and the Monti-Nuti 
were used for comparison. Clearly, the first fails to produce realistic hysteretic plots although 
the capacity and the displacements are in some cases sufficiently estimated. The Menegotto-
Pinto model although it provides hysteretic curves closer to the experimental, still does not 
fully reproduce the experimental results. This can be attributed to some extent to the buckling 
of the longitudinal bars. Substantial improvement is achieved with the Monti-Nuti model. A 
better overall agreement is reached despite the lack of proper calibration of the model and to 



M. Fragiadakis, R. Pinho and S. Antoniou 
 

 12

some particularities present during the test set up that the FE model adopted was not able to 
capture. 
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Figure 13. Wall under Dynamic Loading Conditions, the four loading stages; 
(a) experimental, (b) bilinear kinematic hardening model, (c) M-P model and (d) M-N model. 

 

7 CONCLUDING REMARKS 
Buckling of the longitudinal reinforcement may affect considerably the response of RC 

members, especially when they are subjected to large displacements. This behaviour can be 
captured if the constitutive model of the reinforcement is enhanced with the experimental ob-
servations of Monti and Nuti. Monti and Nuti introduced into the Menegotto-Pinto model a 
set of rules for buckling of the longitudinal reinforcement. Their model, although conceptu-
ally correct, features a not necessarily unconditioned accuracy when predicting stress-strain 
response under a generalized load history. An additional memory rule is presented in order to 
tackle this shortcoming. The rule proposed is based on a relatively simple concept, and thus 
can also be applied in models other than that of Monti and Nuti. In the case-studies examined, 
improved representation of the response was obtained, though the results could still be bet-
tered if ad-hoc model calibrations would be carried out (the latter was however outside of the 
scope of this work). 
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